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Pontryagin’s Maximum Principle [6] is considered as an outstanding achievement
of the Optimal Control Theory. It has been used in a wide range of applications, such
as medicine, traffic flow, robotics, economy, etc. Nevertheless, it is worth remarking
that the Maximum Principle does not give sufficient conditions to compute an optimal
trajectory; it only provides necessary conditions. Thus only candidates to be optimal
trajectories, called extremals, are found. Maximum Principle gives rise to different
kinds of them and, particularly, the so-called abnormal extremals have been studied
because they can be optimal, as Liu and Sussmann, and Montgomery proved in
subRiemannian geometry [4,5].

We build up a presymplectic constraint algorithm, similar to those defined in [2,3],
to determine where the different kinds of extremals of an optimal control problem
can be. After describing such an algorithm, we apply it to the study of extremals,
specially the abnormal ones, in optimal control problems for affine connection control
systems [1]. These systems model the motion of different types of mechanical systems
such as rigid bodies, nonholonomic systems and robotic arms [1].
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